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Entropy and Free Energy. Second and Third Laws of
Thermodynamics. .
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e What is Entropy? j§§

Entropy is a state function, or property of a system,

that provides a measure of its disorder or
randomness.

It is an extensive property. It is a function of T and

V (or P), and chemical composition.



e What do we mean by disorder or randomness?

Illustrate by way of an example.

Return to the system of non-interacting or weakly
interacting particles discussed earlier.

For simplicity, we pick a system of six
non-interacting particles. Suppose, the particles
occupy energy states with energies equal to

€1, €, and €3 as follows:

Then, Esystem = 38la + 2 €2a t €3a



= 3g + 2¢€ + €
Nsystem = Mja + M2a T N3,
=3 + 2 + 1 =6

and the wavefunction for the system is

lPl(l 929394,5’6)

= Q1a(1) $1a(2) $1a(3) $2a(4) §2a(S) ¢3a(6)

However, if there are degeneracies associated with the
molecular energy levels, namely, there are energy states
of equal energy associated with the energy levels, which
is typically the case, then there are other particle
distributions with the same Eggem. For example,

__.__
a b C
2 —o— &
a b



Here, for this particle distribution,
Egsystem = 3€a + €a 1+ €p T €3a
= 3¢ + 2¢& + €
Ngstem = MNia + M2a + Mg+ N3
=3+ 1+ 1+ 1 =6

as before, but the wavefunction for the system is
different:

‘Pz(l 9293,49596)

= (1a(1) $1a(2) $1a(3) 02a(4) 026(5) ¢3a(6)

Because of equal a priori probability for the particles to
occupy molecular energy states of the same energy, this
particle distribution is just as likely as the first one. In
other words, it is equally likely for the system to be
represented by ¥, or W¥,.

Other particle distributions are obtained by
redistributing the particles among the degenerate
molecular energy states associated with the energy
levels, and there would be a distinct wavefunction for
each.



We could generalize this to a system of N particles (N
approaching N,) with electronic, vibrational, rotational,
translational degrees of freedom, where the molecular
energy levels are highly packed and degenerate, as we
discussed earlier. Thus, for a given Egyem, the system
could be represented by many, many system
wavefunctions (Wsystem), corresponding to the different
ways of distributing the particles among the molecular
quantum states.

To illustrate this outcome, I appeal to a system of N
non-interacting particles. However, this result is
completely general, and applies to any system involving
large numbers of molecules. Thus, for macroscopic
systems, in practice, the system has a high density of
system states, namely, there are many, many ‘system ‘s
with the same Egtem.

e Definition of Statistical Entropy

Statistical Entropy = S = KkgIn Qgem

where Qggem is the total number of independent
system wavefunctions associated with the system of N

molecules for a given Egyem and V, or a particular T and
V. kg=1.380x 10> J K" (Boltzmann constant)



It turns out Qg em is related to the number of possible
distinct arrangements arising from distributing the
molecules among the one-particle quantum states, for a
system of non-interacting molecules.

More specifically,

S=- NkBZlenPj + constant

J
all one - particle
quantum states

— Nkp Z XjlnX; + constant
J

or

where Pj is the probability of finding a molecule in
one-particle quantum state j.

Xj is the fraction of molecules occupying

one-particle quantum state j, namely n;/N, where n; is
the number of molecules occupying molecular quantum
state “j”, and Nkg = n(N,kg) = nR.

As you will see later, this result is just the “entropy of
mixing”, namely, the disorder associated with mixing
different kinds of molecules, for example, “red”
molecules with “blue” molecules. Thus, for a system of
N (N — NA) non-interacting identical particles, often
referred to as a perfect gas, where the molecular energy




levels and molecular quantum states are well defined,
the statistical entropy is simply the entropy of mixing
associated with having molecules occupying different
molecular quantum states!

e Effect of Temperature and Volume on Entropy —
A Molecular Interpretation.

Recall entropy is a state function, a property of the
system inasmuch as it offers a measure of the disorder
or randomness of the system. Accordingly, we expect
S to be a function of Egem and V, or T and V. We now
illustrate this by way of a simple example.

Increasing Egystem Or T

As an example, consider N non-interacting point masses,
with no nuclear spin and no internal degrees of freedom
(electronic, vibrational, rotational, etc.). That is, the
point masses have translational energies only.

Such an idealized system is called perfect gas.
Note that an ideal gas shares some of these features,
except that internal degrees of freedom are not

excluded.

One-particle energy states and wavefunctions

Assume a cubic box of side L



hz(n2+m2+12)12 n, m, [
3 are positive
8mL integers

Enlm =

one-particle energies

3
2) . nm _mny |
Onim(x,y,2)= (11 -Z) sm-%c- sann-Z'Z sm—}%Z

System wavefunctions for N non-interacting particles
Wsystem for N non-interacting particles can be written

as products of one-particle eigenfunctions and/or linear
combinations thereof.

eg. if all molecules are “occupying” the lowest
one-particle quantum state,

n=1, m=1, I=1 for all molecules,

then
qjsystem(x]: yi,z1, X2,¥2,22, )

= Ii1¢111(xi,yz',zz')

It is possible to write only 1 such system wavefunction
Q=1

and Ssystem = kBan =0



If circumstances allow some of the particles to be
distributed to higher-energy one-particle quantum
states, then more ‘¥’ > may be written corresponding

to the distinct arrangements arising from allocating the
particles in the one-particle quantum states.

For example, if the nml=211; nmi=121; and nml=112
one-particle quantum states are accessible, possible

‘Psystem’s are:

N
0211(x1,y1,21) T1 0111(xi,yi,2i)
izl
N
0121(x1,y1,21) T &111(xi,3i,2)
i#1
N

d112(x,v1,21) T1 6111(xi,i,zi)
i#1

All 3 of these states of the system have the same energy.
Therefore, system degeneracy has increased.

Thus, the entropy of system has increased with
increasing Eggem Or T.  Accordingly, there is more

° disorder

) randomness.
] Chao



Increasing V

€nml
—>

increasing
Volume

Therefore, more of the one-particle energy states
become accessible for a given T or E, and S increases
with increasing volume. In fact,

Q=alN

so that AS(V] — V2)= kBln%f

N
_ )y _ V2
= kBln( % ) = Nkgln v,
_ V2
B ann( VJ

~

a result that we shall show again later.



Summary
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Summary

Temperature: Increasing the temperature will allow
the higher energy quantum states to become more
accessible to the molecules. System degeneracy goes
up. That is, one can write more distinct W ystem’s for

the system. Therefore, the entropy of the system
increases.

Volume: Increasing the volume will lower the energy
of the translational energy states, making more
quantum states accessible to molecules at a given
temperature. The molecular energy levels become
more closely packed. Again, the system degeneracy
will go up.



» Distinguishable Molecules

So far, we have discussed N identical non-interacting
particles that are indistinguishable, except that they
occupy different molecular quantum states. If
molecules of different chemical structure, isotopic
composition, “different color” share the same
configuration space or volume, each of the
distinguishable molecules will have its own set of
molecular quantum states and the absolute entropy of
the system will increase.

e The “Color Blind” Problem

Being “color blind” will underestimate the absolute
entropy of a system.

But “color blindness” will not affect AS process because

one would be equally “color blind” in computing the
entropy of the initial and final states!

Entropy that is “missed” or not accountable due to
“color blindness” is often termed residual or latent
entropy.



Second Law of Thermodynamics. Thermodynamic
Entropy

e There are a number of different statements of the
Second Law.

(1) ds=%

For reversible process: 4S= d—%@i

. . do;
For irreversible process: dS >—%¥Z

Here S is the thermodynamic entropy; dQrev, dQirrev

denote heat delivered to system in a reversible and
irreversible process respectively.

(2) W. Thomson (Lord Kelvin): It is impossible, by a
cyclic process to take heat from an energy reservoir and
convert it to work without at the same time transferring
heat from a hot to a cold body.

or: Work cannot be extracted by a cyclic process
from an energy reservoir at one temperature.

(3) Clausius’ version: It is impossible by a cyclic process
to transfer heat from a cold body to a hot body without
also performing work



or: Heat does not flow spontaneously from a cold to a
hot body.

In this course and in this lecture, we shall only be
concerned with Statement (1) of the Second Law,
namely,

- dl
For reversible process: dS= —Q]’,ﬂ

For irreversible process: dS> ﬁl—Q%‘i

or T

where dQyrey, dQjrrev denote heat input to system in a

reversible and irreversible process respectively; and T is
the absolute temperature of the system.

Note that we must write one expression for each
subsystem of an otherwise isolated system, or an
expression for the system and its surrounding if the
system is not isolated.



We shall now discuss the implications of the Second
Law by way of two illustrations.

e A concrete example involving heat transfer only

?7/2%§%E&2Z02%§%; §/AZ§%5925Q34%3?}
) H0, dgal C [ 7| H0, (4+X)g [
7 % 7 0oc Y
?’ ‘ /é spontaneous % - ‘ %
A 1giceat O° C A 9 7l (- X)gice )
2 7 : 7 )
(] @ ] melting s " )
7/ ] % at® C ]

A G

equilibrium
AE process =0 AS process = ?
Equilibrium

How many grams of ice must melt to reach
equilibrium?

Specific heat of water=1 cal g '°C
AH fysion =80 cal g~

To attain equilibrium, must melt X grams of ice to cool 4
grams of H,O from 10 °C to 0 °C.

or (X g) (80 cal g_l) =4g)(1calg

80 X = 40 X=05g

Lo ™y(10°C)



So process is

H,0, 4 grams at 10°C H>0, (4.5) grams
¥ —

at 0°C
1 gramice at 0°C +0.5 gramice at 0°C
A—S—pmcess-i
melting B
ASjz, = AOrev — Qrev=0-5880(falgl
ce Tice Tice 273K
constant T

=0.1465 cal K1

ASy 0= [ 773 _CAI

_ 1 o 1(273_dT
83 Twater—4g. lcalg ™ C j

T water 283 T, water

- 4zn(§—§-§)caz K1=-0.1439 cal K1

AS - ASice + ASH20

—
=(0.1465 - 0.1439) cal K '
=0.0026 cal K '
=(0.0026) (4.184 JK )
=0.0109JK '



| kealmol | = 4.184 kJ mol '

l1kcal = 4.184kJ
1 cal = 4.184J
Bottom line:
. ASprocess - ASice +A SH20 > 0

® ASentire system (ice + water) > 0

e Overall process in the isolated system is
spontaneous!!!

o Heat is transferred from a higher temperature to a
lower temperature!!

e Second example: Entropy changes due to change
in volume

Consider perfect gas and reversible isothermal
expansion.




Recall First Law: dE =dQ — PexdV

Reversible process =  dE =d0rey — PsystemdV
=TdS— PdV

Isothermal expansion of ideal gas = dE =0

E(T) only
Therefore  TdS = Pdeﬂ dv
or ds =— d |14

4
AS= jf”RdV nRin—+
]

Bottom line:

e Entropy of perfect or ideal gas increases with an
isothermal volume increase.



Entropy of Mixing

First, consider a pure substance (perfect gas).

S(N,T,V) or S(n,T,V)
S is a state function

Constant mass (closed) system, S(T,V)

N

Convenient independent variables

So it is simple to calculate AS for the following process
based on the result that we have obtained.

process
’—>
1deal
gas
Ni,T,Vi Ne, T, Vy
(orm) T or (ng)

volume accessible
to gas molecules



ng=m  =n depends on initial
and final states only

S is a state function!

Vs
= ASprocess = annvi

What happens when a different gas at the same
pressure initially occupies the two sides of the chamber?

Process 1is equivalent to sum of following two
sub-processes.

®

A A
A A
vacuum — A A
l" A A N
ideal
gas A
ny, n4
A
Vi Vi=Vr
;=T Tr=T
A _ n4RT _ny4RT
= IA P]A - VT



B B B B HB
vacuum — >
B B B B
np
Volume or phase Ve=Vr
space accessible to n —
each of the gases per BB Tf 3
mole has increased!! Vi p.B_ nBRT
T i = T VT
B I’IBRT
P7 = B
Vi

4 _ "B

Initial pressures same — -
VjA VjB

Final pressure same

RT RT 1748 Ve
bperp 2L T [(B)1 (0 )0,




nA+nB_nA ng

So =
V Nng+n _
or £= Z B=XA k
Vi hy
V- ng+n -
and 7}*3= ATIB _ ]
Vi hp

ASprocess = —nAR lnXA — nBR lnXB
= —nT[XARlnXA + XBRlnXB]

entropy of mixing!

General Formula for Entropy of Mixing of Ideal
Solutions (gases, liquids, or solids)

AS

mixing T

=—ny RY. Xi Ik (if per mole of mixture, n_=1)

1

I

components
n mixture




Entropy Changes in General

Recall, for complex systems, e.g., a chemical system or a
biological cell, we must appeal to the general results
derived from thermodynamics to determine AE,

AH, and AS for a process. In practice, we need to
determine AE, AH, and AS not only for the system itself,
but also for its surroundings, and add the changes for
both the system and the surroundings.

The important result of the Second Law is that

ASprocess - ASsystem + A Ssurroundings > 0
AS ocess > 0 if the process is spontaneous
AS ocess T 0 if the system is already in equil-

ibrium with its surroundings.

So one typically includes AS ., and AS

surroundings

in the analysis of the problem.



Now, for each part (i.e., system or surroundings), we
can take advantage that S = thermodynamic entropy
is a state function; i.e., S(n.7.V) or S(n,T,P), and we can
appeal to the First Law to derive some general results,
that are completely general for simple as well as the

most complex systems. For example,

according to the First Law, we can write

dE =dQ — PexidV (general )

dE = dQOrey — PdV (reversible)

dE =T1dS — PdV general

_dE+PdV

or dS T

Since we may express further, e.g.

oE oL
ar = (a_T) VdT + (W)TdV



oE
=CypdIl + ( GV)TdV

we have |&= CV dr + K grb;) P]d V|1  completely general!

In general, one would write one equation for the system
and one for the surroundings, or each subsystem of an

otherwise isolated system.

Examples

* For an ideal or perfect gas

oE nRT 1| (OE nR
(aV)T—O & P——I}—, SO [(W] +P:l=7

sdS= -QTK dar + n_é? av (ideal gas)

Cy nRT
and  ASideal gas = jf L ar + jf a4



= CVln(%) + ann(%)

e For constant pressure processes, more convenient to
recast above in terms of enthalpy H

dE =1dS — pdV general
Now dH =dE + pdV + VdP general

Combining, we have dH = T7dS + Vdp

Since we may express dH further, e.g.

oH OH oH
a1-(2) r+(2) v wcoirs(Z)

LS A e/
ds ==+ dT+TKaPJT—V]dP

For a constant pressure process, then

r,C
_f*fr=p
AS_T,- TdT

Note that if phase changes take place during process,
there exist singularities in C,, but



AS phase
transition

CpdT = AHransition

T |
T transition transition Ttransition

e (Cyclic processes

For system that has undergone a complete cycle,

ASsystem = 0 since §dS — 0 & S is a state function.

but ASsystem + ASsurroundings = {’ dsystem + ASsurrozma’ing

>0 depending upon whether the process
is reversible or irreversible

or ,&dSsystem + surrounding = 0



Example of a cyclic process

T,V2, P2

Step @)
T,V1, P >
reversible
2 isothermal
expansion
Reversible
adiabatic Step@

compression

T, Vy4,Py <

Step @

reversible

Step 1

Step2

Step 3

Step 4

1,V3,P3

isothermal
compression

Reversible isothermal expansion

Reversible adiabatic expansion

Reversible isothermal compression

Reversible adiabatic compression

Reversible A 2= J'QQY"FL
adiabatic —0
expansi a
xpansion no heat
Step Q) mput to
system
ASste system
Vo
ann[ v, j
0
V4
ann(—)
V3
0



ASgas =nR m(ZZ_) +nR ln(ﬂ)

System Vi V3
V2 V4
Need 7 and 7,

From step 2, adiabatic reversible expansion
T v, nR/Cy
(7)-(#
From step 4, adiabatic reversible compression

-

a_n
or Vs V4
Va_7s
or v, =7,
S ASgas = ann(—Z—z-) - ann(—V—‘i) =0
System 1 V4
On the other hand,

Osystem = Ostep 1+ Ostep 2+ Ostep 3 + Dstep 4

= nRTIn(—V—Z—) +0+ nRT'ln(&J +0
Vi V3
V2 ; ﬂ)
= nRYYn( V]) + nRTln( Vs # 0



This result probably prompted Clausius to introduce S

and dsziy%ﬂ.

Third Law of Thermodynamics

The entropy of a perfectly ordered material, such as a
perfect crystal or a perfect superfluid such as liquid
helium, approaches zero as the temperature approaches
absolute zero.

lim S = 0 fora perfectly ordered material

T—- 0K

Why we need the Second Law!

Next time, we will discuss why we need the Second Law.
We will also introduce the concept of Free Energy.



